Jumat, 29 Juni 2012

KONVERSI ENERGI PANAS LAUT bag 1

PENDAHULUAN

Lautan yang meliputi dua per tiga permukaan bumi, menerima energi panas yang berasal dari penyinaran matahari. Lautan befungsi sebagai suatu penampungan yang cukup besar dari energi surya yang mencapai bumi. Kira-kira seperempat dari daya surya sebesar 1,7 x 1017 watt yang mencapai atmosfer diserap oleh lautan. Selain itu, air laut juga menerima energi panas yang berasal dari panas bumi, yaitu magma yang berasal dari bawah laut. Pemanasan dari permukaan air di daerah tropikal mengakibatkan permukaaan air laut memiliki suhu kira-kira 27 - 30oC. Bilamana air permukaan yang hangat ini dipakai dalam kombinasi dengan air yang lebih dingin (5 - 7oC) pada kedalaman 500 - 600 meter, maka suatu sumber energi panas yang relatif besar akan tersedia.


Menurut rancangan-rancangan terkini energi listrik akan dapat dibangkitkan dalam pusat-pusat listrik tenaga panas laut (PLT-PL) dengan menggunakan siklus Rankine rangkaian tertutup maupun terbuka. Selisih suhu sebesar 20oC akan tersedia selama 24 jam sehari dan sepanjang tahun. Hal ini jauh lebih menguntungkan dibanding dengan pemanfaatan sinar matahari di daratan, yang tersedia hanya siang hari, itupun bilamana udara tidak mendung atau cuaca tidak hujan. Bilamana selisih 20oC itu dimanfaatkan dengan suatu efisiensi efektif sebesar misalnya 1,2%, maka suatu arus air sebesar 5 meter kubik per detik akan dapat menghasilkan daya elektrik bersih dengan daya sebesar kira-kira 1 MW. Dapat dibayangkan bahwa ukuranukuran yang besar sekali diperlukan untuk dapat membantu suatu PLT-PL yang besar. Sebab sejumlah arus air yang meliputi 500 meter kubik per detik yang akan diperlukan untuk dapat membuat suatu PLT-PL yang besar, misalnya 100 MW. Dengan demikian maka taraf efisiensi yang perlu diusahakan untuk ditingkatkan.





KONVERSI ENERGI PANAS LAUT


1.1 PRINSIP KERJA

Pada teknologi konversi energi panas laut atau KEPL (Ocean Thermal Energy Conversion, OTEC), siklus Rankine digunakan untuk menarik arus-arus energi termal yang memiliki sekurang-kurangnya selisih suhu sebesar 20oC. Pada saat ini terdapat dua siklus daya alternatif yang dikembangkan, yaitu siklus Claude terbuka dan siklus tertutup. Siklus terbuka dengan mendidihkan air laut yang beroperasi pada tekanan rendah, menghasilkan uap air panas yang melewati turbin penggerak/generator.

Siklus tertutup menggunakan panas permukaan laut untuk menguapkan fluida pengerak dengan Amonia atau Freon. Uap panas menggerakan turbin, kemudian turbin berkerja menghidupkan generator untuk menghasilkan listrik. Prosesnya, air laut yang hangat dipompa melewati tempat pengubah dimana fluida pemanas tekanan rendah diuapkan hingga menjalankan turbo-generator. Air dingin dari dalam laut dipompa melewati pengubah kedua mengubah uap menjadi cair kemudian dialiri kembali dalam sistem.

Dalam siklus Claude terbuka, air laut digunakan sebagai medium kerja maupun sebagai sumber energi. Air hangat yang berasal dari permukaan laut diuapkan dalam suatu alat penguap (flash evaporator) dan menghasilkan uap air dengan tekanan yang sangat rendah, lk 0,02 hingga 0,03 bar dan suhu kira-kira 20oC. Uap itu memutar sebuah turbin uap yang merupakan penggerak mula bagi generator yang menghasilkan energi listrik. Karena tekanan uap itu rendah sekali maka ukuran-ukuran turbin menjadi sangat besar. Setelah melewati turbin, uap yang sudah dimanfaatkan dialirkan ke sebuah kondensor yang menghasilkan air tawar. Kondensor didinginkan oleh air laut yang berasal dari lapisan bawah permukaan laut. Dengan demikian, metode dengan siklus Claude ini menghasilkan energi listrik maupun air tawar. Masalah dengan metode ini adalah bahwa ukuran-ukuran turbin menjadi sangat besar oleh karena tekanan uap yang begitu rendah. Sebagai contoh, sebuah modul sebesar 10 MW yang terdiri atas penguap, turbin dan kondensor, akan memerlukan ukuran garis tengah dan panjang 100 meter.



Dalam kaitan ini maka metode kedua, yaitu dengan siklus tertutup, merupakan pilihan yang pada saat ini lebih disukai dan digunakan banyak proyek percobaan. Seperti yang terlihat pada gambar 2, air permukaan yang hangat dipompa ke sebuah penukar panas atau evaporator, dimana energi panas dilepaskan kepada suatu medium kerja, misalnya amonia. Amonia cair itu akan berubah menjadi gas dengan tekanan kira-kira 8,7 bar dan suhu lk 21oC. Turbin berputar menggerakkkan generator listrik yang menghasilkan energi listrik. Gas amonia akan meninggalkan turbin pada tekanan kira-kira 5,1 bar dan suku lk 11oC dan kemudian di bawa ke kondensor. Pendinginan pada kondensor mengakibatkan gas amonia itu kembali menjadi bentuk benda cair. Perbedaan suhu dalam rangkaian perputaran amonia adalah 10oC sehingga rendemen Carnot akan menjadi :
ηC = T2 - T1 = 3,4 %
T2

Rendemen ini merupakan efisiensi termodinamika yang baik sekali, namun di dalam praktek rendemen yang sebenarnya akan terjadi lebih rendah, yaitu sekitar 2-2,5 %. Pada rancangan-rancangan terkini suatu arus air sebesar 3-5 m3/s baik pada isi air hangat maupun pada sisi air dingin, diperlukan untuk menghasilkan daya sebesar 1 MW pada generator. Selain amonia (NH3), juga Fron-R-22 (CHClF2) dan Propan (C3H6) memiliki titik didih yang sangat rendah, yaitu antara -30oC sampai -50oC pada tekanan atmosfer dan + 30oC pada tekanan antara 10 dan 12,5 Kg/cm2. Gas-gas inilah yang prosfektif untuk dimanfaatkan sebagai medium kerja pada konversi energi panas laut.

Tidak ada komentar:

Posting Komentar